語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Active Learning in College Science =...
~
Walter, Emily M.
Active Learning in College Science = The Case for Evidence-Based Practice /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Active Learning in College Science/ edited by Joel J. Mintzes, Emily M. Walter.
其他題名:
The Case for Evidence-Based Practice /
其他作者:
Walter, Emily M.
面頁冊數:
XXX, 1001 p. 208 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Engineering/Technology Education. -
電子資源:
https://doi.org/10.1007/978-3-030-33600-4
ISBN:
9783030336004
Active Learning in College Science = The Case for Evidence-Based Practice /
Active Learning in College Science
The Case for Evidence-Based Practice /[electronic resource] :edited by Joel J. Mintzes, Emily M. Walter. - 1st ed. 2020. - XXX, 1001 p. 208 illus.online resource.
Section I, Introduction -- 1 From Constructivism to Active Learning in College Science; Joel J. Mintzes -- 2 Evidence-Based Practices for the Active Learning Classroom; Robert Idsardi -- 3 Student Engagement in Active Learning Classes; Linda C. Hodges -- 4 Active Learning and Conceptual Understanding in College Biology; Jeffrey T. Olimpo and David Esparza -- 5 Navigating the Barriers to Adoption and Sustained Use of Active Learning; Emily M. Walter, Lillian Senn and Evelin E. Munoz -- Section II, Eliciting Ideas and Encouraging Reflection with Written Inscriptions -- 6 Reflective Writing in Active Learning Classrooms; Calvin S. Kalman -- 7 Using Writing in Science Class to Understand and Activate Student Engagement and Self-Efficacy; Eileen K. Camfield, Laura Beaster-Jones, Alex D. Miller, and Kirkwood M. Land -- 8 Enhancing the Quality of Concept Mapping in Undergraduate Science; Ian M. Kinchin -- Section III, Using Clickers to Engage Students -- 9 Personal Response Systems: Making an Informed Choice; Kathleen M. Koenig -- 10 Clickers in the Biology Classroom: Strategies for Writing and Effectively Implementing Clicker Questions that Maximize Student Learning; Michelle K. Smith and Jennifer K. Knight -- 11 Click-on Diagram Questions: Using Clickers to Engage Students in Visual-Spatial Reasoning; Nicole D. LaDue and Thomas F. Shipley -- 12 Clicker Implementation Styles in STEM; Angela Fink and Regina F. Frey -- Section IV, Supporting Peer Interaction with Small Group Activities -- 13 Peer Interaction in Active Learning Biology; Debra L. Linton -- 14 Peer-Led Team Learning; Pratibha Varma-Nelson and Mark Cracolice -- 15 Team-Based Learning in STEM and the Health Sciences; Sarah Leupen -- 16 Collaborative Learning in College Science: Evoking Positive Interdependence; Karan Scager, Johannes Boostra, Ton Peeters, Jonne Vulperhorst and Fred Wiegant -- 17 Silent Students in the Active Learning Classroom; Carrie A. Obenland, Ashlyn H. Munson and John S. Hutchinson -- Section V, Restructuring Curriculum and Instruction -- 18 Why Traditional Lab-Based Courses Fail…And What We Can Do About It; N.G. Holmes -- 19 Redesigning Science Courses to Enhance Engagement and Performance; Xiufeng Liu, Chris Rates, Ann Showers, Lara Hutson and Tilman Baumstark -- 20 Evolution of a Student Centered Biology Class: How Systematically Testing Aspects of Class Structure has Informed our Teaching; Deborah A. Donovan and Georgianne L. Connell -- 21 Problem-Based Learning in College Science; Woei Hung and Ademola Amida -- 22 Project-based Guided Inquiry (PBGI) in Introductory Chemistry; Lindsay B. Wheeler and Lisa N. Morkowchuk -- 23 Investigative Science Learning Environment: Learn Physics by Practicing Science; Eugenia Etkina, David T. Brookes and Gorazd Planinsic -- 24 Student Generated Instructional Materials; Brian P. Coppola and Jason K. Pontrello -- 25 The Physics of Medicine Program: Development of an Active Learning Curriculum at the Intersection of Physics and Medicine; Nancy L. Donaldson -- 26 Connecting Physics and Medicine: Engaging Students Online and in the Classroom; Ralf Widenhorn -- 27 Gamification in General Chemistry; Dave Allen Jenkins, Jr. and Diana Mason -- 28 Group Active Engagement in Introductory Biology: The Role of Undergraduate Teaching and Learning Assistants; Hannah E. Jardine, Daniel M. Levin and Todd J. Cook -- 29 Course Based Undergraduate Research Experiences in Biological Sciences; Stanley M. Lo and John C. Mordacq -- Section VI, Rethinking the Physical Environment: Studio Classrooms and Flipped Instruction -- 30 Active Learning Spaces: Matching Science Classrooms with Pedagogy; Jenay Robert, Crystal Ramsay, Sarah E. Ades, Kenneth C. Keiler and Christopher Palma -- 31 The TEAL Physics Project at MIT; Peter Dourmashkin, Michelle Tomasik and Saif Rayyan -- 32 Implementing the Studio Classroom in Chemistry; Alan L. Kiste -- 33 The Flipped Learning Model in General Science: Effects on Students’ Learning Outcomes and Affective Dimensions; David Gonzalez-Gomez and Jin Su Jeong -- 34 Designing and Delivering Flipped Courses: Instructor and Student Perceptions from Basic Medical Sciences; Sarah McLean -- 35 Active Learning with Visual Representations in College Science; Martina A. Rau and John W. Moore -- Section VII, Enhancing Understanding with Technology; 36 Utilizing Technology to Support Scientific Argumentation in Active Learning Classrooms; J. Bryan Henderson and Earl Aguilera -- 37 Computer Manipulatives and Student Engagement in an Online Mathematics Course; Jennifer French, Haynes Miller and Anindya Roy -- 38 Online Collaborative Learning in STEM; Brett M. McCollum -- 39 Innovation in a MOOC: Project-Based Learning in the International Context; Miri Barak and Maya Usher -- 40 Social Media as a Tool for Teaching Large Enrollment Science Classes; Aditi Pai -- 41 Interactive Video Vignettes for Teaching Science; Robert B. Teese, Kathy M. Koenig and David P. Jackson -- 42 Earthlabs: A Model for Supporting Undergraduate Student Inquiry about Change over Time and Space; Karen S. McNeal, Julie C. Libarkin, Tamara Shapiro Ledley and Katherine K. Ellins -- 43 Google Earth Activities in Online Geosciences Classrooms; Athena Owen Nagel and Renee M. Clary -- 44 Challenges and Opportunities for Virtual Learning in College Geology; Youngwoo Cho and Renee M. Clary -- 45 Using 3D Printing in Science for Elementary Teachers; Elena Novak and Sonya Wisdom -- 46 Using Augmented Reality to Promote Active Learning in College Science; Eric E. Goff, Adam Hartstone-Rose, Matthew J. Irvin and Kelly Lynn Mulvey -- 47 Error Discovery Learning; Christopher Lee -- Section VIII, Assessing Understanding -- 48 Concept Inventories: Design, Application, Uses, Limitations and Next Steps; Michael W. Klymkowsky and Kathy Garvin-Doxas -- 49 Collaborative Learning and Formative Assessment in Astronomy; Michael C. LoPresto -- 50 Active Learning in Astronomy: Learning Goals, Assessment and Class Time; Timothy F. Slater -- 51 Collaborative Assessment that Supports Learning; Georg W. Rieger and Caroline L. Rieger -- 52 Collaborative Group Testing in Human Physiology; Mario Vazquez-Garcia -- 53 Engineering Teachers’ Assessment Knowledge in Active and Project Based Learning; Daphna Shwartz-Asher, Shari Reiss, Amona Abu-Younis Ali and Yehudit Judy Dori -- Section IX, Active Learning and the College Science Instructor -- 54 Enhancing Diversity in College Science with Active Learning; Cissy J. Ballen -- 55 Faculty and Student Perceptions of Active Learning; Lorelei E. Patrick -- 56 Student Anxiety and Fear of Negative Evaluation in Active Learning Science Classrooms; Katelyn M. Cooper and Sara E. Brownell -- 57 Student Motivation and Resistance in Active Learning Classrooms; David C. Owens, Angela T. Barlow and Cindi Smith-Walters -- 58 Evidence-based Strategies to Reduce Student Resistance to Active Learning; Cynthia J. Finelli and Maura Borrego -- 59 Considering Diverse Learners in STEM: Incorporating Universal Design for Learning with Clickers; Angela N. Google, Grant E. Gardner, Joshua W. Reid, Diane Majewski, Vera Tabakova, Karen Mulcany and Subodh Dutta -- 60 Preparing the Next Generation of Educators for Active Learning; Alexandru Maries -- 61 When Active Learning Fails…..and What to do About it; Dee Unglaub Silverthorn.
This book explores evidence-based practice in college science teaching and investigates claims about the efficacy of alternative strategies in such teaching. It showcases outstanding cases of exemplary practice supported by solid evidence, and gives voice to practitioners who offer models of teaching and learning that meet the high standards of the scientific disciplines. The book’s primary focus is to uncover classroom practices that encourage and support meaningful learning and conceptual understanding in the natural sciences. To this end, it presents a review of published work in the field that suggests a useful way of classifying these classroom practices. Following an introduction based on constructivist learning theory, the book explores the practices of eliciting ideas and encouraging reflection. It examines the use of clickers to engage students and the support of peer interaction with small group activities. It discusses such topics as restructuring curriculum and instruction, rethinking the physical environment, enhancing understanding with technology, and assessing understanding. The final section of the book is devoted to professional issues facing college and university faculty who choose to adopt active learning in their courses.
ISBN: 9783030336004
Standard No.: 10.1007/978-3-030-33600-4doiSubjects--Topical Terms:
1069125
Engineering/Technology Education.
LC Class. No.: LC8-6691
Dewey Class. No.: 507.1
Active Learning in College Science = The Case for Evidence-Based Practice /
LDR
:09977nam a22004095i 4500
001
1022431
003
DE-He213
005
20200706134733.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030336004
$9
978-3-030-33600-4
024
7
$a
10.1007/978-3-030-33600-4
$2
doi
035
$a
978-3-030-33600-4
050
4
$a
LC8-6691
072
7
$a
JNU
$2
bicssc
072
7
$a
SCI063000
$2
bisacsh
072
7
$a
JNU
$2
thema
072
7
$a
PD
$2
thema
082
0 4
$a
507.1
$2
23
245
1 0
$a
Active Learning in College Science
$h
[electronic resource] :
$b
The Case for Evidence-Based Practice /
$c
edited by Joel J. Mintzes, Emily M. Walter.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XXX, 1001 p. 208 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Section I, Introduction -- 1 From Constructivism to Active Learning in College Science; Joel J. Mintzes -- 2 Evidence-Based Practices for the Active Learning Classroom; Robert Idsardi -- 3 Student Engagement in Active Learning Classes; Linda C. Hodges -- 4 Active Learning and Conceptual Understanding in College Biology; Jeffrey T. Olimpo and David Esparza -- 5 Navigating the Barriers to Adoption and Sustained Use of Active Learning; Emily M. Walter, Lillian Senn and Evelin E. Munoz -- Section II, Eliciting Ideas and Encouraging Reflection with Written Inscriptions -- 6 Reflective Writing in Active Learning Classrooms; Calvin S. Kalman -- 7 Using Writing in Science Class to Understand and Activate Student Engagement and Self-Efficacy; Eileen K. Camfield, Laura Beaster-Jones, Alex D. Miller, and Kirkwood M. Land -- 8 Enhancing the Quality of Concept Mapping in Undergraduate Science; Ian M. Kinchin -- Section III, Using Clickers to Engage Students -- 9 Personal Response Systems: Making an Informed Choice; Kathleen M. Koenig -- 10 Clickers in the Biology Classroom: Strategies for Writing and Effectively Implementing Clicker Questions that Maximize Student Learning; Michelle K. Smith and Jennifer K. Knight -- 11 Click-on Diagram Questions: Using Clickers to Engage Students in Visual-Spatial Reasoning; Nicole D. LaDue and Thomas F. Shipley -- 12 Clicker Implementation Styles in STEM; Angela Fink and Regina F. Frey -- Section IV, Supporting Peer Interaction with Small Group Activities -- 13 Peer Interaction in Active Learning Biology; Debra L. Linton -- 14 Peer-Led Team Learning; Pratibha Varma-Nelson and Mark Cracolice -- 15 Team-Based Learning in STEM and the Health Sciences; Sarah Leupen -- 16 Collaborative Learning in College Science: Evoking Positive Interdependence; Karan Scager, Johannes Boostra, Ton Peeters, Jonne Vulperhorst and Fred Wiegant -- 17 Silent Students in the Active Learning Classroom; Carrie A. Obenland, Ashlyn H. Munson and John S. Hutchinson -- Section V, Restructuring Curriculum and Instruction -- 18 Why Traditional Lab-Based Courses Fail…And What We Can Do About It; N.G. Holmes -- 19 Redesigning Science Courses to Enhance Engagement and Performance; Xiufeng Liu, Chris Rates, Ann Showers, Lara Hutson and Tilman Baumstark -- 20 Evolution of a Student Centered Biology Class: How Systematically Testing Aspects of Class Structure has Informed our Teaching; Deborah A. Donovan and Georgianne L. Connell -- 21 Problem-Based Learning in College Science; Woei Hung and Ademola Amida -- 22 Project-based Guided Inquiry (PBGI) in Introductory Chemistry; Lindsay B. Wheeler and Lisa N. Morkowchuk -- 23 Investigative Science Learning Environment: Learn Physics by Practicing Science; Eugenia Etkina, David T. Brookes and Gorazd Planinsic -- 24 Student Generated Instructional Materials; Brian P. Coppola and Jason K. Pontrello -- 25 The Physics of Medicine Program: Development of an Active Learning Curriculum at the Intersection of Physics and Medicine; Nancy L. Donaldson -- 26 Connecting Physics and Medicine: Engaging Students Online and in the Classroom; Ralf Widenhorn -- 27 Gamification in General Chemistry; Dave Allen Jenkins, Jr. and Diana Mason -- 28 Group Active Engagement in Introductory Biology: The Role of Undergraduate Teaching and Learning Assistants; Hannah E. Jardine, Daniel M. Levin and Todd J. Cook -- 29 Course Based Undergraduate Research Experiences in Biological Sciences; Stanley M. Lo and John C. Mordacq -- Section VI, Rethinking the Physical Environment: Studio Classrooms and Flipped Instruction -- 30 Active Learning Spaces: Matching Science Classrooms with Pedagogy; Jenay Robert, Crystal Ramsay, Sarah E. Ades, Kenneth C. Keiler and Christopher Palma -- 31 The TEAL Physics Project at MIT; Peter Dourmashkin, Michelle Tomasik and Saif Rayyan -- 32 Implementing the Studio Classroom in Chemistry; Alan L. Kiste -- 33 The Flipped Learning Model in General Science: Effects on Students’ Learning Outcomes and Affective Dimensions; David Gonzalez-Gomez and Jin Su Jeong -- 34 Designing and Delivering Flipped Courses: Instructor and Student Perceptions from Basic Medical Sciences; Sarah McLean -- 35 Active Learning with Visual Representations in College Science; Martina A. Rau and John W. Moore -- Section VII, Enhancing Understanding with Technology; 36 Utilizing Technology to Support Scientific Argumentation in Active Learning Classrooms; J. Bryan Henderson and Earl Aguilera -- 37 Computer Manipulatives and Student Engagement in an Online Mathematics Course; Jennifer French, Haynes Miller and Anindya Roy -- 38 Online Collaborative Learning in STEM; Brett M. McCollum -- 39 Innovation in a MOOC: Project-Based Learning in the International Context; Miri Barak and Maya Usher -- 40 Social Media as a Tool for Teaching Large Enrollment Science Classes; Aditi Pai -- 41 Interactive Video Vignettes for Teaching Science; Robert B. Teese, Kathy M. Koenig and David P. Jackson -- 42 Earthlabs: A Model for Supporting Undergraduate Student Inquiry about Change over Time and Space; Karen S. McNeal, Julie C. Libarkin, Tamara Shapiro Ledley and Katherine K. Ellins -- 43 Google Earth Activities in Online Geosciences Classrooms; Athena Owen Nagel and Renee M. Clary -- 44 Challenges and Opportunities for Virtual Learning in College Geology; Youngwoo Cho and Renee M. Clary -- 45 Using 3D Printing in Science for Elementary Teachers; Elena Novak and Sonya Wisdom -- 46 Using Augmented Reality to Promote Active Learning in College Science; Eric E. Goff, Adam Hartstone-Rose, Matthew J. Irvin and Kelly Lynn Mulvey -- 47 Error Discovery Learning; Christopher Lee -- Section VIII, Assessing Understanding -- 48 Concept Inventories: Design, Application, Uses, Limitations and Next Steps; Michael W. Klymkowsky and Kathy Garvin-Doxas -- 49 Collaborative Learning and Formative Assessment in Astronomy; Michael C. LoPresto -- 50 Active Learning in Astronomy: Learning Goals, Assessment and Class Time; Timothy F. Slater -- 51 Collaborative Assessment that Supports Learning; Georg W. Rieger and Caroline L. Rieger -- 52 Collaborative Group Testing in Human Physiology; Mario Vazquez-Garcia -- 53 Engineering Teachers’ Assessment Knowledge in Active and Project Based Learning; Daphna Shwartz-Asher, Shari Reiss, Amona Abu-Younis Ali and Yehudit Judy Dori -- Section IX, Active Learning and the College Science Instructor -- 54 Enhancing Diversity in College Science with Active Learning; Cissy J. Ballen -- 55 Faculty and Student Perceptions of Active Learning; Lorelei E. Patrick -- 56 Student Anxiety and Fear of Negative Evaluation in Active Learning Science Classrooms; Katelyn M. Cooper and Sara E. Brownell -- 57 Student Motivation and Resistance in Active Learning Classrooms; David C. Owens, Angela T. Barlow and Cindi Smith-Walters -- 58 Evidence-based Strategies to Reduce Student Resistance to Active Learning; Cynthia J. Finelli and Maura Borrego -- 59 Considering Diverse Learners in STEM: Incorporating Universal Design for Learning with Clickers; Angela N. Google, Grant E. Gardner, Joshua W. Reid, Diane Majewski, Vera Tabakova, Karen Mulcany and Subodh Dutta -- 60 Preparing the Next Generation of Educators for Active Learning; Alexandru Maries -- 61 When Active Learning Fails…..and What to do About it; Dee Unglaub Silverthorn.
520
$a
This book explores evidence-based practice in college science teaching and investigates claims about the efficacy of alternative strategies in such teaching. It showcases outstanding cases of exemplary practice supported by solid evidence, and gives voice to practitioners who offer models of teaching and learning that meet the high standards of the scientific disciplines. The book’s primary focus is to uncover classroom practices that encourage and support meaningful learning and conceptual understanding in the natural sciences. To this end, it presents a review of published work in the field that suggests a useful way of classifying these classroom practices. Following an introduction based on constructivist learning theory, the book explores the practices of eliciting ideas and encouraging reflection. It examines the use of clickers to engage students and the support of peer interaction with small group activities. It discusses such topics as restructuring curriculum and instruction, rethinking the physical environment, enhancing understanding with technology, and assessing understanding. The final section of the book is devoted to professional issues facing college and university faculty who choose to adopt active learning in their courses.
650
2 4
$a
Engineering/Technology Education.
$3
1069125
650
2 4
$a
International and Comparative Education.
$3
768864
650
2 4
$a
Learning & Instruction.
$3
670152
650
1 4
$a
Science Education.
$3
668800
650
0
$a
Technical education.
$3
563004
650
0
$a
Comparative education.
$3
563176
650
0
$a
International education .
$3
1253475
650
0
$a
Instruction.
$3
1253701
650
0
$a
Learning.
$3
555256
650
0
$a
Science education.
$3
1151737
700
1
$a
Walter, Emily M.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1318157
700
1
$a
Mintzes, Joel J.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1318156
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030335991
776
0 8
$i
Printed edition:
$z
9783030336011
776
0 8
$i
Printed edition:
$z
9783030336028
856
4 0
$u
https://doi.org/10.1007/978-3-030-33600-4
912
$a
ZDB-2-EDA
912
$a
ZDB-2-SXED
950
$a
Education (SpringerNature-41171)
950
$a
Education (R0) (SpringerNature-43721)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入