語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Explainable and interpretable models...
~
Escalante, Hugo Jair.
Explainable and interpretable models in computer vision and machine learning
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Explainable and interpretable models in computer vision and machine learning/ edited by Hugo Jair Escalante ... [et al.].
其他作者:
Escalante, Hugo Jair.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xvii, 299 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-319-98131-4
ISBN:
9783319981314
Explainable and interpretable models in computer vision and machine learning
Explainable and interpretable models in computer vision and machine learning
[electronic resource] /edited by Hugo Jair Escalante ... [et al.]. - Cham :Springer International Publishing :2018. - xvii, 299 p. :ill. (some col.), digital ;24 cm. - The springer series on challenges in machine learning,2520-131X. - Springer series on challenges in machine learning..
1 Considerations for Evaluation and Generalization in Interpretable Machine Learning -- 2 Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges -- 3 Learning Functional Causal Models with Generative Neural Networks -- 4 Learning Interpretable Rules for Multi-label Classification -- 5 Structuring Neural Networks for More Explainable Predictions -- 6 Generating Post-Hoc Rationales of Deep Visual Classification Decisions -- 7 Ensembling Visual Explanations -- 8 Explainable Deep Driving by Visualizing Causal Action -- 9 Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening -- 10 Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions -- 11 On the Inherent Explainability of Pattern Theory-based Video Event Interpretations.
ISBN: 9783319981314
Standard No.: 10.1007/978-3-319-98131-4doiSubjects--Topical Terms:
561253
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Explainable and interpretable models in computer vision and machine learning
LDR
:01907nam a2200325 a 4500
001
930097
003
DE-He213
005
20181129145155.0
006
m d
007
cr nn 008maaau
008
190627s2018 gw s 0 eng d
020
$a
9783319981314
$q
(electronic bk.)
020
$a
9783319981307
$q
(paper)
024
7
$a
10.1007/978-3-319-98131-4
$2
doi
035
$a
978-3-319-98131-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.E96 2018
245
0 0
$a
Explainable and interpretable models in computer vision and machine learning
$h
[electronic resource] /
$c
edited by Hugo Jair Escalante ... [et al.].
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xvii, 299 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
The springer series on challenges in machine learning,
$x
2520-131X
505
0
$a
1 Considerations for Evaluation and Generalization in Interpretable Machine Learning -- 2 Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges -- 3 Learning Functional Causal Models with Generative Neural Networks -- 4 Learning Interpretable Rules for Multi-label Classification -- 5 Structuring Neural Networks for More Explainable Predictions -- 6 Generating Post-Hoc Rationales of Deep Visual Classification Decisions -- 7 Ensembling Visual Explanations -- 8 Explainable Deep Driving by Visualizing Causal Action -- 9 Psychology Meets Machine Learning: Interdisciplinary Perspectives on Algorithmic Job Candidate Screening -- 10 Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions -- 11 On the Inherent Explainability of Pattern Theory-based Video Event Interpretations.
650
0
$a
Machine learning.
$3
561253
650
0
$a
Computer vision.
$3
561800
650
1 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Pattern Recognition.
$3
669796
700
1
$a
Escalante, Hugo Jair.
$3
1211071
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer series on challenges in machine learning.
$3
1143127
856
4 0
$u
https://doi.org/10.1007/978-3-319-98131-4
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入